Topic 4 - Properties of Angle and Triangles (Chapter 2)
EXTRA = Extra questions on the back relating to that concept

Concept \#	Concept	Review Questions
17	$2.1 / 2 / 3$ Find missing angle measures in a diagram of parallel lines cut by a transversal including triangles; Using angle properties prove that lines are parallel or not.	Pg 85 \#1, 5 Pg 111 \#10b
18	$2.1 / 2 / 3$ Derive basic proofs involving angles in triangles and parallel lines as well as identify errors in a given proof	Pg 85 \#6, P 106 \#7, 9 EXTRA BELOW \#5b, 8
19	2.4 Find and prove missing angle measures in polygons	P106 \#10 Pg 111 \#10d EXTRA BELOW
20	2.1-2.4Solve situational problems that involve angles, parallel and nonparallel lines with transversals and angles in triangles and polygons	EXTRA BELOW
21	(Extra handouts) Derive proofs involving congruent triangles	EXTRA BELOW

Topic 5- Trigonometry (Ch 3 \& 4)

Concept \#	Concept	Review Questions
$\mathbf{2 2}$	Ch. 3 and $4.1 / 2$ I can solve for a missing side or angle using law of sines or cosines (excluding ambiguous case)	Pg 129 \#4,5 Pg 154 \# 7, 8 EXTRA BELOW
23	$4.3 / 4$ I can illustrate and explain the possibilities for a given set of measurements for the ambiguous case.	Pg 175 \# 1ad, 3ad , Pg 198 \#2
24	Ch. 3 and 4 I can solve situational questions involving non right triangles	Pg 129 \#7, 8,9 Pg 154 \#9-12 Pg 198 \#4, $\mathbf{6}$

CONCEPT 17:

1. Determine the measures of the unknown angles.

CONCEPT 18:

1. Prove that $A B \| C D$.

2.

\qquad
$\angle b=$ \qquad
$\angle \mathrm{c}=$

Find the value of: a) $\quad \angle \mathrm{PHA}$
b) $\angle \mathrm{JBC}$
c) $\angle \mathrm{QAH}$
d) $\angle \mathrm{DCF}$
3. Determine the

CONCEPT 19: Determine the value of x

CONCEPT 20:

1.

The figure shows the angles used to make a double bank shot in an air hockey game.
a) Find x.
b) Can you still get the red puck into the goal if x is is increased by a little? By a lot? Explain

CONCEPT 21:

2. In the diagram below, what is the least number of Angle measures you need to know in order to find all of the unknown angles? Explain.
3. How many sides does a regular polygon
have if the measure of an interior angle is 171?
A. For each pair of triangles, tell which postulate, if any, can be used to prove the triangles congruent.
4. $\triangle \mathrm{AEB} \cong \Delta$ \qquad by \qquad
5. $\triangle \mathrm{CDE} \cong \Delta$ \qquad by
\qquad 3. $\triangle \mathrm{DEA} \cong \Delta$ \qquad by \qquad
6. $\Delta \mathrm{AGE} \cong \Delta$ \qquad by \qquad

7. $\Delta \mathrm{RTS} \cong \Delta$ \qquad by \qquad 6. $\triangle \mathrm{ABC} \cong \Delta _$by

8. $\triangle \mathrm{BAP} \cong \triangle$

Given: $\overrightarrow{B D}$ bisects $\angle A B C$

8. $\triangle \mathrm{SAT} \cong \Delta$ \qquad

Topics 4,5
B. 1. Given: B is the midpoint of $\overline{D C} \cdot \overline{A B} \perp \overline{D C}$ Prove: $\triangle A B D \cong \triangle A B C$
 Prove: $\triangle A E D \cong \triangle C E B$

4. Given $\overline{J K} \cong \overline{M L}, \measuredangle J K L \cong \measuredangle M L K$ Prove: $\measuredangle J \cong \measuredangle M$

CONCEPT 22. 1. Solve $\triangle A B C$ where $\angle B=40, b=27, c=39.5$. Such that $\angle C$ is an obtuse angle.

3. Given: $\overline{A D} \| \overline{B C}, \overline{A D} \cong \overline{C B}$

1. Solve $\triangle A B C$ where $\angle B=40, b=27, c=39.5$. Such th
nearest degree and side lengths to the nearest tenth.

Round angles to the nearest degree and side lengths to the nearest tenth.

SOLUTIONS:

CONCEPT 17: 1. $\mathrm{a}=30, \mathrm{~b}=25, \mathrm{c}=105$
2. $\measuredangle \mathrm{PHA}=70, \measuredangle \mathrm{JBC}=37, \measuredangle \mathrm{QAH}=130, \measuredangle \mathrm{DCF}=52$

CONCEPT 18:

STATEMENTS	REASONS	
1. $\measuredangle E=30^{\circ}$	1.Given	
2. $\measuredangle A C D=100^{\circ}$	2.Given	
3. $\measuredangle B=70^{\circ}$	3.Given	
$4 . \measuredangle A=80^{\circ}$	4.Sum of Interior Angles in a Triangle are Supplementary	
5. $\measuredangle E C D=80^{\circ}$	5.Adjacent Angles in a Line are Supplementary	
$6 . A \bar{B} \\| \overline{C D}$	6. Corresponding Angles are Congruent	

CONCEPT 19: $\mathrm{x}=12$

2

STATEMENTS	REASONS	
1. $\overline{B E} \\| \overline{F D}$	1.Given	
2. $\measuredangle C F G=70^{\circ}$	2.Given	
3. $\measuredangle A C B=36^{\circ}$	3. Given	
4. $\measuredangle F G E=110^{\circ}$	4. Given	
5. $\overline{C G} \cong \overline{C G}$	5. Reflexive Property	
6. $\measuredangle 7=36^{\circ}$	6. Vertically Opposite Angles are Congruent	
7. $\measuredangle 6=36^{\circ}$	7. Alternate Interior Angles of Parallel Lines are Congruent	
8. $\measuredangle 11=70^{\circ}$	8. Same Side Interior Angles of Parallel Lines are Supplementary	
9. $\triangle C E G \cong \triangle G F C$	9. AAS	

3.

STATEMENTS	REASONS	
1. $\overline{A D} \\| \overline{B C}$	1.Given	
2. $\overline{A D} \cong \overline{C B}$	2.Given	
3. $\measuredangle D A C \cong \measuredangle B C A$	3. Alternate Interior Angles of Parallel Lines are Congruent	
4. $\measuredangle A D B \cong \measuredangle D B C$	4. Alternate Interior Angles of Parallel Lines are Congruent	
5. $\triangle A E D \cong \triangle D B C$	5. SAS	

Note: In this proof you could have found that $\measuredangle A E D \cong \measuredangle B E C$ by vertically opposite angles and then used AAS as your last step.
4.

STATEMENTS	REASONS
1. $\overline{J M} \cong \overline{M L}$	1.Given
2. $\measuredangle J K L \cong \measuredangle M L K$	2.Given
3. $\overline{K L} \cong \overline{K L}$	3. Reflexive Property
4. $\Delta J K L \cong \triangle M L K$	4. SAS
5. $\measuredangle J \cong \measuredangle M$	5. Corresponding parts of congruent triangles are congruent

CONCEPT 22: $\quad \measuredangle C=110, \measuredangle A=30, a=21$

