[Step 3: h-coordinate:

h(2) = -20 + 40 + 1

7.3,4,5,7,8: Applications of Quadratics Functions in Standard Form $y = ax^2 + bx + c - Concept #10$

Example 1: A ball is thrown into the air and follows the path given by $h(t) = -5t^2 + 20t + 1$, where h represents height in meters and t represents time in seconds.

a) Determine the initial height of the ball. The initial height will occur when time is Oseco.

$$h(0) = -5(0)^2 + 20(0) + 1$$

h(0) = I meter The initial height is Im, which is also the y-int. (h-intercept in this Determine the vertex. case) of the graph.

b) Determine the vertex.

Step 1: Find t-intercepts (x-int.) by factoring or graduatic formula

Step 2: Find the equation of the axis of symmetry, which is the x-value (t-value) of the vertex

Step 3: Substitute the x-value (t-value) into the function to find the y-value (h-value) of the vertex

vertex.

Step 1 0=-5t2+20t+1 = Noteasily factorable so use the quadratic

$$t = -20 \pm \sqrt{20^{\circ} - 4(-5)(1)}$$

$$t = -20 \pm \sqrt{420}$$

$$= -20 \pm \sqrt{420}$$

$$t = -20 \pm \sqrt{420}$$

$$= -20 \pm$$

$$= \frac{A+B}{2}$$
Vertex=(2,21)

c) Sketch the path of the ball. (Label three key coordinates and the axes.)

- d) What is the ball's maximum height? _______
- e) How long does it take for the ball to reach its *maximum height*? $\frac{4.049 \, \text{secs}}{2000 \, \text{secs}} \approx -2000 \, \text{secs}$
- f) What is the height of the ball after 3 seconds? $h(3) = -5(3)^2 + 20(3) + 1$

$$h(3) = -45 + 60 + 1$$

 $h(3) = 16m$

g) What are the domain and range of this function? $D = \{ t \mid 0 \le t \le 4.049, t \in \mathbb{R} \}$

R= ShIO Sh Sal, hER3

Example 2 (Pg 407 #14)

Samuel is hiking along the top of the First Canyon on the South Nahanni River in the Northwest Territories. When he knocks a rock over the edge, it falls into the river, 1260m below. The height of the rock, h(t), at t seconds can be modelled by the following function: $h(t) = -25t^2 - 5t + 1260$

a) How long will it take the rock to reach the water? height of rock equals Om when it reaches the water

$$0 = -25t^{2} - 5t + 1260$$

$$0 = -5 (5t^{2} + 1 + 252) \in \text{solve by factoring}$$

$$0 = -5 (5t + 36)(t - 7)$$

$$5t + 36 = 0^{-36} \quad t - 7 = 5^{-7}$$

$$5t = -36 = 7.2 \quad t = 7$$

$$t = -36 = 7.2 \quad t = 7$$

Inadmissible Solution as time is not negative The rock will take 7 seconds to reach the water

c) Sketch the path of the rock.

d) What is the domain and range of the function?

d) Demonstrate the solution using your graphing calculator

Example 3- Pg 374 Ex.1

The flight time for a long-distance water ski jumper depends on the initial velocity of the jump and the angle of the ramp. For one particular jump, the ramp has a vertical height of 5 m above water level. The height of the ski jumper in flight, h(t), in metres, over time, t, in seconds, can be modelled by the following function:

$$h(t) = 5.0 + 24.46t - 4.9t^2$$

a) How long does this water ski jumper hold his flight pose?

The skier holds his flight pose until he is 4.0 m above the water.

b) What is the highest height the ski jumper reaches? Use technology to help you answer these question

a)
$$4=5+24.46t-4.9t^2$$

 $0=-4.9t^2+24.46t+1$ = graph on graphing calculator and find $t=5.0323$ seconds Zeros.

b) on graphing cakulator calculate the maximum value h=31.525m

Assignment: Pg 371 #12-14 Pg 407 #13(Solve by factoring) Pg 428 #8, 10 Pg 380 #7,9 (Using Graphing Calc)