7.1 Exploring Quadratic Relations

Gummy bears and Frogs Activity

Review

unctions: A specific type of relation that occurs when each element in the domain is only associated with one element in the range. Graphically we can decide if a relation is a function by using the vertical line test.

Types of Relations:

Linear Relation (line)

y = mx + b (slope-intercept form) OR ax + by = c (standard form) OR ax + by + c = 0 (general form)

The exponent on the x variable is _____ (1st degree polynomial)

Quadratic Relation (parabola)

 $y = ax^2 + bx + c$, where $a \ne 0$ (standard form) $y = a(x-p)^2 + q$, where $a \ne 0$ (vertex form)

- The largest power of x is _____ (___ degree polynomial)
- o Why can $a \neq 0$? $y = \bigcirc_{X}^{2} + bx + C$

Y = bx+C > The equation would change to linear

EXAMPLE #1: Which of the following relations are functions?

a)

b)

e)

g) {(6, 3), (1, 7), (12, 10), (5, 3)}

Function

h) {(4, 2), (5, 7), (4, 6), (9, 15)}

Not a Function.

EXAMPLE #2: Which of the following are quadratic? Why?

a)
$$f(x) = 7x^2$$

b)
$$f(x) = 5x + 8$$

c)
$$y = (x+2)(x-1) = x^{2} - |x+2x-2|$$

 $-x^{2} + |x-2|$

d)
$$f(x) = 2x(x-3)$$

e)
$$f(x) = 3x^2 + 7x + 8$$

g)
$$y = x(x - 6)^2$$

No

$$(x^{2}-6x)(x-6)$$

 $(x^{3}-6x^{2}-6x^{3}+36x)$

b)
$$g(y) = 6(y + 3)^2 + 8$$

Yes

h)
$$g(x) = 6(x+3)^2 + 8 = 6(x+3)(x+3) + 8$$

 $= 6x + 18x + 18x + 54 + 8$

$$= (6x+18)(x+3) + 8$$

$$= 6x^{2} + 18x + 18x + 54 + 8$$

$$= 6x^{2} + 36x + 64$$

EXAMPLE #3: Given quadratics in the form $y = ax^2 + bx + c$, find the values of a, b, and c.

a)
$$y = 7x^2 + 4x - 2$$

b)
$$y = \frac{1}{3}x^2 - 5x + 1$$

b)
$$y = \frac{1}{3}x^2 - 5x + 1$$
 $a = \frac{1}{3}$, $b = \frac{-5}{3}$, $c = \frac{1}{3}$
c) $y = x^2 + 3x$ $a = \frac{1}{3}$, $b = \frac{-5}{3}$, $c = \frac{1}{3}$

c)
$$y = x^2 + 3x$$

$$a =$$
_____, $b =$ _____, $c =$ _____

d)
$$f(x) = -\frac{2}{7}x^2 + 8$$

d)
$$f(x) = -\frac{2}{7}x^2 + 8$$
 $a = \frac{2}{7}$, $b = \frac{2}{7}$, $c = \frac{8}{7}$

e)
$$y = -x^2$$

EXAMPLE #4: Which of the following are quadratic?

Pg 360 #1,2,4