- July of steple 4

6.4 Creating the model for Optimization Problems (Concept #4)

KEY NEW IDEAS FOR THIS LESSON

You will be able to develop algebraic and graphical reasoning by solving optimization problems using linear programming

OPTIMIZATION PROBLEM: A problem where a quantity must be maximized or minimized following a set of guidelines or conditions.

CONSTRAINT: A limiting condition of the optimization problem being modelled, represented by a linear inequity.

OBJECTIVE FUNCTION: In an optimization problem, the equation that represents the relationship between the two variables in the system of linear inequalities and the quantity to be optimized

FEASIBLE REGION: The solution region for a system of linear inequalities that is modelling an optimization problem.

OPTIMAL SOLUTION: A point in the solution set that represents the maximum or minimum value of the objective function. If a vertex isn't included in the feasible region the optimal solution will be a point, within the feasible region that is close to the vertex

LINEAR PROGRAMMING: A mathematical technique used to determine which solutions in the feasible region result in the optimal solutions of the objective function.

Steps to Solving an Optimization Problem:

- The solution to an optimization problem is usually found at one of the vertices of the feasible region.
- To determine the optimal solution to an optimization problem using linear programming, follow these steps:
 - Step 1. Create an algebraic model that includes:
 - a defining statement of the variables used in your model
 - the restrictions on the variables
 - · a system of linear inequalities that describes the constraints
 - an objective function that shows how the variables are related to the quantity to be optimized
 - **Step 2.** Graph the system of inequalities to determine the coordinates of the vertices of its feasible region.
 - **Step 3.** Evaluate the objective function by substituting the values of the coordinates of each vertex.
 - **Step 4.** Compare the results and choose the desired solution.
 - **Step 5.** Verify that the solution(s) satisfies the constraints of the problem situation.

Note: In optimization problems, any restrictions on the variables are considered constraints. For example, if you are working with positive real numbers, $x \ge 0$ and $y \ge 0$ are constraints and should be included in the system of linear inequalities.

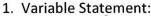
EXAMPLE #1:

Three teams are travelling to a basketball tournament in cars and minivans.

- * Each team has no more than 2 coaches and 14 athletes = 16 team members x 3 = 48 people
- * Each car can take 4 team members, and each minivan can take 6 team
- * No more than 4 minivans and 12 cars are available.

The school wants to know the combination of cars and minivans that will require the minimum and maximum number of vehicles. Create a model to represent this situation. of Cass & Hinivans

Possible Combinations

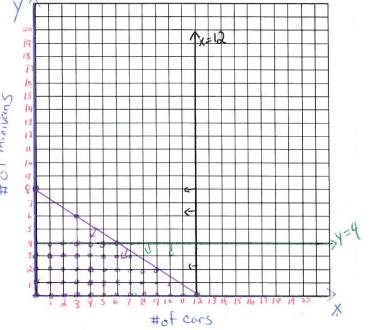


2. Domain, Range and Restrictions:

3. Constraint Inequalities:

4. Graph the above Constraint Inequalities

within the restrictions:



Objective Function to be Maximized/Minimized:

Lot V = total # of vehicles X ty = V

Leave Blank for now:

EXAMPLE #2:

A refinery produces oil and gas.

- At least 2 L of gasoline is produced for each litre of heating oil
- * The refinery can produce up to 9 million litres of heating oil and 6 million litres of gasoline each day.
- * Gasoline is projected to sell for \$1.10 per litre.
- * Heating oil is projected to sell for \$1.75 per litre.

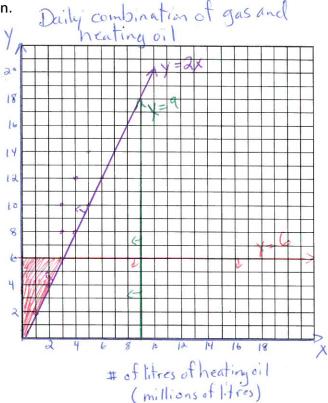
The company needs to determine the daily combination of gas and heating oil that must be produced to maximize revenue. Create a model to represent this situation.

2. Domain and range and restrictions:

3. Constraint Inequalities:

$$X \le 0$$
 $Y \le 0$
 $2x \le y$
 $x \le 9000000$
 $y \le 6000000$

4. Graph the above Constraint Inequalities within the restrictions:



5. Objective Function to be Maximized/Minimized:

Let R=Total +ex 1.75x + 1.10x = R

Leave Blank for now:

ASSIGNMENT:

Note: Please do each question on one side of a page. Please make sure that there are at least 10 lines that are blank on the bottom of each page as we will be doing a bit more work on these questions tomorrow!

TEXTBOOK P 330 # 1-7