
6.1 Graphing Linear Inequalities in Two Variables (Concept #1)

Determining solutions of inequalities

Example#1: For which inequalities is (3, 1) a possible solution?

c)
$$y \ge 9$$

 $1 \ge 9 \times \text{False}$
 $(3,1)$ is not a solution

Graphing Linear Inequalities in two variable

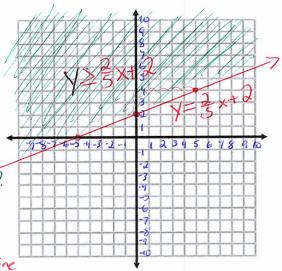
Steps to Graphing Inequalities

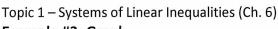
- 1. Initially, graph the boundary line. (ex. y= mx+b)
- Methods of Graphing:
 - table of values
 - find x-intercept and y-intercept y = mx + b (m = slope, b = y-intercept)
- 2. If the inequality is < or > use a **dotted line** (the points on the line are NOT included in the solution) If the inequality is \leq or \geq use a **solid line** (the points on the line ARE included in the solution)

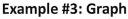
When given a domain and range, the solution set is considered:

Continuous – (Real Numbers) (ex. $x \in R$, $y \in R$)

Discrete – separate or distinct set of number (Integers, Whole Numbers)(eX. x ∈ W, y ∈ W or x ∈ I, y ∈ I) If no domain and range are given, assume the set of Real Numbers.

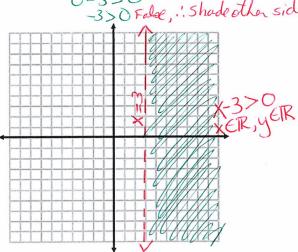

3. Choose a check point (if possible, choose the origin) and substitute into the original equation. Shade on the appropriate side of the line. Do NOT pick a point that lies on the line.


Example#2: Graph $-2x + 5y \ge 10$ Boundary $5y \ge 2x + 10$ Line $5y \ge 2x + 2$ solidline $4 \ge 3x + 2$ Equation of - b y = 3x + 2 The boundary line Test Point do (0,0) is the solution region? $-2(0)+5(0) \ge 10$ O ≥ 10 False


Shade the region above the boundary line where (0,0) is not included

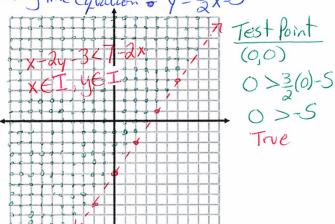
Question: Is (5,4) a part of the solution set? Is (3,-4)?

How would the above graph look if the domain and range changed to integers?



a) $\{(x, y) \mid x-3 \ge 0; x \in \mathbb{R}, y \in \mathbb{R}\}$ Chandary ine X=3 X > BDandary Test point (0,0)

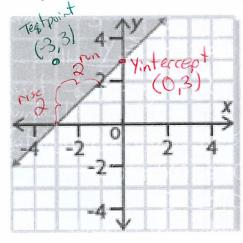
0-3>0 -3>0 False, is shade other side



Pre- AP Foundations 20 dehed line

b) $(x, y) | x - 2y - 3 < 7 - 2x, x \in I, y \in I$

x-2y-327-2x-x


boundary line equation = $y = \frac{3}{2}x - 5$ Doundary line equation = $y = \frac{3}{2}x - 5$

The domain and range only include the In graph b is ($\frac{1}{2}$,0) in the solution set? No because X is a rational to leave the solution set? Remember: When you divide or multiply both sides of an inequality by a negative number, you must

Flip the inequality sign!!!

Example#4: Determine the inequality of this graph

y = x + 3 boundary line equation $y \ge x + 3$

check a point in the shaded region and region and test it in the inequality.

(-3,3) \(\text{Y} \ge X + 3 \)

3 \(\ge 3 + 3 \)

3 \(\ge 0 \)

True. \(\text{True} \)

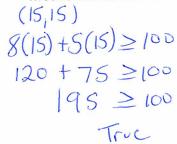
1 is the inequality.

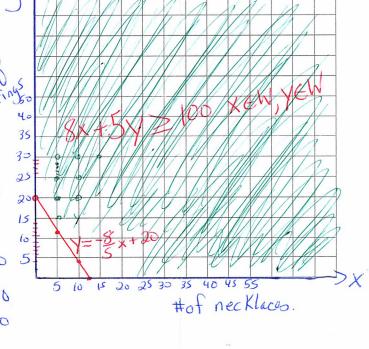
$$y \ge x + 3$$
$$3 \ge 3 + 3$$

EXAMPLE #5: Kolton and Carolyn want to donate some money to a local food pantry. To raise funds, they are selling PI necklaces and earrings that they have made themselves. Necklaces cost \$8 and earrings cost \$5. What is the range of possible sales they could make in order to donate at least \$100?

a) Assign your variables:

b) Establish your inequality:


c) Decide what type of restrictions will be on the domain and range and decide if your graph would include all Real Numbers, Integers or Whole Numbers.

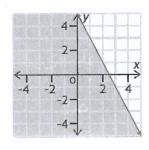

d) Sketch a graph of this situation.

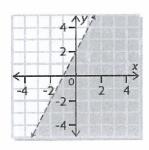
$$(15,15)$$
 $(20,25)$

f) Verify both your points and explain what each point means within the context of this situation.

$$(20,25)$$

 $8(20)+5(25)\geq 100$
 $160+125\geq 100$
 $285\geq 100$
True


ASSIGNMENT: TEXTBOOK p303 #3, 4, 5, 6, AT LEAST TWO OF 7-12 & 14


PLUS THE FOLLOWING

For y < 3x + 5 which of the following points fall within the solution set? 1.

$$(-1, -3), (-1, 2), (-4, 3), (-2, -3), (3, 1), (1, 5), (0, 5), (-1, 3)$$

Determine the inequality for the following graphs 2

