1.4 Proving Conjectures : Deductive Reasoning (Concept # 15)

Let’s review what we already know:

Inductive Reasoning: is a type of reasoning in which we arrive at a conclusion, generalization or
educated guess based on experience, observation or patterns

The conclusion, generalization or education guess which is arrived at by using inductive reasoning is
called a CONJECTURE. Conjectures may or may not be true.

Example #1: Consider the following
a) Write a conjecture based on the information to the left:
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Deductive Reasoning: A specific conc]us;on through logical reasoning by starting with general

assumptions that are known to be valid. A type of reasoning based on things you already know to be
true

Proof: A mathematical argument showing that a statement is valid in all cases, or that no
counterexamples exist.

We will be doing some forms of mathematical proofs in this unit. A few things that might be helpful to
know about some of the algebra we will be encountering:

Let n = a particular number
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Example #2: Jon discovered a pattern when adding integers
1+2+3+4+5=15

(-15) + (-14) + (-13) + (-12) + (-11) = -65
(3)+ () + (D +(0)+1=-5

Jon’s Claim: Whenever you add five consecutive integers, the sum is always 5 times the median of the
numbers
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Prove his conjecture:
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Example #3: Prove that the product of an even integer and an odd integer is always even.
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Example #4: Prove that the difference between consecutive perfect squares is always an odd number.
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Example #5: Prove that any three digit number is divisible by five when the last digit in the number is
divisible by five.
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Example #6 Use a VENN Diagram to prove the following: All dogs are mammals. All mammals are
vertebrates. Shaggy is a dog. What can be deduced about Shaggy?
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